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Abstract
Four-dimensional Einstein’s general relativity is shown to arise from a gauge
theory for the conformal group, SO(4, 2). The theory is constructed from
a topological dimensional reduction of the six-dimensional Euler density
integrated over a manifold with a four-dimensional topological defect. The
resulting action is a four-dimensional theory defined by a gauged Wess–
Zumino–Witten (WZW) term. An ansatz is found which reduces the full set of
field equations to those of Einstein’s general relativity. When the same ansatz
is replaced in the action, the gauged WZW term reduces to the Einstein–Hilbert
action.

PACS numbers: 04.50.+h, 11.25.Mj

1. Introduction

Besides its observational success in the solar system, in measurements of the binary pulsar and
in the early universe through primordial nucleosynthesis, Einstein’s general relativity (GR)
has a beautiful mathematical formulation. One of the appealing mathematical features is its
connection with a topological invariant in two dimensions. The well-known relation of the
Einstein–Hilbert Lagrangian and the Euler characteristic can be summarized as follows:

SEH = c3

16πG
ζ4(M), χ2(M) = 1

4π
ζ2(M), ζD(M) =

∫
M

R
√

|g| dDx. (1)

This fact, sometimes referred to as the dimensional continuation of the Euler density, has a
straightforward generalization to higher dimensions, giving rise to the Lovelock series [1, 2].
This series in dimension D contains

[
D+1

2

]
terms, where [· · ·] denotes the integer part. The

terms are the dimensionally continued Euler densities of all dimensions below D and the
cosmological constant term.

Although the dimensional continuation process gives a well-defined prescription to obtain
the most general, ghost-free1, gravitational Lagrangian [3], its Kaluza–Klein (KK) reduction to

1 For perturbations around flat space.
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four dimensions gives standard GR with an arbitrary cosmological constant and with additional
constraints that force, for instance, the four-dimensional Euler density to vanish [4, 5]. This
is a generic feature of the dimensional reduction of theories that contain higher powers of
curvature. It is commonly believed that higher curvature corrections to the Einstein–Hilbert
action produce small deviations from GR, but this is actually not true: the field equations,
obtained from the variation of the reduced action with respect to the four-dimensional scalars,
produce constraints additional to the Einstein equations which rule out many solutions of GR,
including the gravitational field of a spherically symmetric source [6].

This problem is analogous to that encountered in the gauge theory sector in standard
KK reductions to four dimensions starting from the Einstein–Hilbert action in D > 4, where
the Yang–Mills density must necessarily vanish in backgrounds with constant scalars. Thus,
although the behavior of theories obtained by the KK reduction of Lovelock Lagrangians
could be reasonable at the galactic scale or at the beginning of our Universe, at the scale of our
solar system their departure from the GR behavior is not experimentally acceptable. On the
other hand, there is the largely unsolved problem of the non-renormalizability, in the power
counting sense [7], of the gravitational interaction. Although pure gravity has a finite one-loop
S matrix [8], until now all matter couplings—except supergravity [9]—destroy this one-loop
behavior. At two loops pure gravity diverges [10], and at three loops also supergravity contains
divergences [11], although the coefficient in front of the divergence has not been computed
until now [12]. One is left with an uncomfortable scenario, in which there is no field theory
formulation to compute a simple graviton scattering in a consistent way. These facts motivate
the search for new theories that not only include Einstein’s field equations in some way, but
also contain other dynamical sectors so that other phenomena can be explained within these
theories.

A useful guide can be found in the three-dimensional case which, in the first-order
formalism, can be seen as a gauge theory, where the vielbein e and the spin connection ω

are part of a single connection [13]. This Chern–Simons (CS) theory for gravity contains a
larger set of field configurations than metric GR. Indeed, by a gauge transformation any of the
components of a flat connection can always be set equal to zero in an open neighborhood. Thus,
a generic field configuration of CS gravity does not have a metric interpretation. Projection
of the gauge theory to the sector where the vielbein is invertible and the connection is torsion
free allows one to recover the usual metric theory of gravity.

Three-dimensional CS theory is renormalizable, as follows from the fact that the unique
dimensionless coupling constant can only take integer values (in fact, it is finite at the quantum
level) [14, 15]. Renormalization of three-dimensional gravity can then be proven by embedding
the theory in a gauge theory with a principal bundle structure, in accordance with the fact that
all known physical interactions which make sense quantum mechanically are explained by
gauge theories. Thus, an embedding of four-dimensional GR in a gauge theory where e and
ω are parts of a single connection is a welcome feature.

The theoretical motivation is quite natural. Instead of considering the dimensional
continuation of the two-dimensional Euler density, the four-dimensional Lagrangian will be
given by a topologically induced dimensional reduction of the six-dimensional Euler density.
The dimensional reduction mechanism occurs due to the introduction of a four-dimensional
topological defect in the six-dimensional manifold where the Euler density is integrated. This
approach was already studied in [16, 17]. These authors, however, restrict the connection in
the action such that the only degrees of freedom left at the defect are the components which
correspond to the four-dimensional e and ω, obtaining in this way, just the usual Einstein–
Hilbert plus cosmological constant action.
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Here, instead, no restrictions are imposed on the reduction process and the nontriviality of
the bundle is always assumed. This gives rise to a four-dimensional theory with a Lagrangian
that is gauge invariant under the conformal group SO(4, 2). This symmetry is broken down to
SO(3, 1) by the presence of the defect. The theory is defined by the metric-independent sector
of the gauged Wess-Zumino-Witten (gWZW) action. The kinetic term Tr(DµgDµg−1)—
where Dµg = ∂µg + [Aµ, g], Tr is the bilinear invariant of the Lie group and Aµ is the
Lie algebra valued connection—never arises in our construction [18]. The resulting action
resembles in many ways its three-dimensional, quantum mechanically finite sibling: in both
cases e and ω are part of a single SO(m, n) connection A; both theories admit a vacuum
configuration e = ω = 0, in which the spacetime causal structure completely disappears; both
have a quantized dimensionless ‘coupling’ constant in front of the action. The discreteness
of this constant makes any continuous process of renormalization impossible, hinting that the
beta function must be zero.

In section 2, the mechanism of dimensional reduction is discussed. For the sake of
simplicity, the discussion is presented first by analyzing the four-dimensional Euler density
integrated on a four-dimensional spacetime with a two-dimensional defect. The extension of
results to reduce from six to four dimensions together with the field equations is stated. In
section 3, the on-shell configuration that reproduces Einstein’s gravity is discussed. Finally,
section 4 contains the discussion and conclusions.

2. Topologically induced dimensional reduction

Observing that four-dimensional gravity is the dimensional continuation of the two-
dimensional Euler density, the natural object to be reduced dimensionally is the six-
dimensional Euler density2,

χ(M) = 1

48π3

∫
M6

〈FFF〉 = 1

48π3

1

23

∫
M6

εABCDEF FABFCDFEF , (2)

where the indices A,B, . . . go from 0 to 5 and F = 1
2JABFAB = dA + AA is the pseudo-

Riemannian curvature of the six-dimensional manifold3. Depending on the signature of
the six-dimensional metric, the generators JAB can be assumed to span any of the algebras
so(6), so(5, 1), so(4, 2) or so(3, 3). The symmetric trace 〈· · ·〉 is the Levi-Civitta invariant
tensor of these groups, 〈JABJCDJEF 〉 = εABCDEF and ∂M6 = ∅. As will be shown,
a dimensional reduction occurs if a four-dimensional sub-manifold is removed from M6,
producing a topological defect. However, in order to be able to use the standard exterior
calculus (e.g., Stokes theorem), and pass from the six-dimensional integral to a four-
dimensional one, a limiting process is needed. Here, the topological defect will be created by
removing a six-dimensional cylinder M4 × D2 and then taking the limit in which the radius
of the two-dimensional disk D2 shrinks to zero. This is known as a regularization process to
remove a sub-manifold of codimension 2.

2.1. The two-dimensional case

In order to describe the process in a simpler setting, let us consider the case of a four-
dimensional manifold M4 with a two-dimensional defect, as depicted in figures 1 and 2. For

2 In this work the exterior product between forms is omitted, i.e. F ∧ F ≡ FF . Since pullback and exterior
derivatives commute, they are usually omitted in the physics literature, and we follow that convention. For more
conventions, see the appendix.
3 We call it F so as not to confuse it with its four-dimensional analog R.
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×

Figure 1. A two-dimensional defect in a four-dimensional manifold. The sub-manifold (a product
of M2 with an infinitesimal disc D2

R) has been deleted.

×

Σ

Σ

Figure 2. The geometry of figure 1 is obtained by identifying �3− with �3
+ and shrinking the

radius, R, of the loop S1
R to zero.

simplicity we will define M4 as a simply connected, non-compact, boundaryless manifold,
such that it can be covered by one chart. For example, M4 may have the topology of �4.

The action is given by the integral of the characteristic form over M4 − M2. We shall
assume that M2 is a two-dimensional sub-manifold without a boundary and furthermore we
assume that it lies entirely in some three-dimensional hyperplane in M4 (we will not consider
the possibility that the embedding of M2 forms a nontrivial knot). The integral is defined
through the following regularization process: from M4 a tubular neighborhood D2

R × M2 is
removed, where D2

R is a 2-disk of radius R with respect to some topological metric. We define
a four-dimensional integral over M4 − M2 as the integral over M4 − D2

R × M2, in the limit
in which the radius R, of the 2-disk D2

R, goes to zero:∫
M4−M2

〈FF〉 := lim
R→0

∫
M4−D2

R×M2

〈FF〉 . (3)

The excision of D2
R ×M2 from M4 introduces the boundary ∂

(
M4 − D2

R × M2
) = S1

R ×M2.
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(a) (b)

Figure 3. The manifold M4 − M2 is covered by two charts U+ and U−. They overlap in two
disconnected regions as shown in (a). However, the transition function can be chosen to be trivial
in one of the regions. The other region can be shrunk to an effectively three-dimensional surface
across which A becomes discontinuous, as shown in (b).

In view of the above assumptions about the topology of M4 and M2, the domain of
integration M4 − D2

R × M2 can be covered by two charts which are denoted by U+ and U−
respectively. The overlap region, shown in figure 3(a), can be shrunk to a three-dimensional
hyperplane which intersects the defect all along the length of M2. This hyperplane is
divided into two disconnected parts by the defect. The connections in each chart, A+ and
A− respectively, are related by a transition function in the overlap regions. However, since
nontrivial holonomies can only occur for paths which wind completely around the defect, it
is natural and convenient to take the transition function in one of the overlap regions to be
the identity. The other overlap region is denoted as � and the transition function is denoted
as h . This is illustrated in figure 3(b). Thus, with this choice of atlas, the connection is
continuous as one goes around the defect except at � where A+ and A− are related by a gauge
transformation: A+|� = Ah

−|� ,

Ah := h−1Ah + h−1 dh. (4)

In each chart the characteristic form can be expressed as a total derivative so that∫
U±

〈FF〉 = ∫
∂U±

CS(A±), where CS(A) is the Chern–Simons 3-form:

CS(A) := 〈
A dA + 2

3A
3
〉
. (5)

The integral of (3) thus reduces to an integral over the contour depicted in figure 2,

lim
R→0

∫
M4−D2×M2

〈FF〉 =
∫

�3
+

CS(Ah
−) +

∫
�3−

CS(A−)

+ lim
R→0

{∫
C+×M2

CS(A+) +
∫

C−×M2
CS(A−)

}
(6)

where ∂U+ = �+
⋃

(C+ × M2) and ∂U− = �−
⋃

(C− × M2) and C± are semi-circles such
that S1

R = C+ ⋃
C−.

The first two integrals on the RHS of (6) correspond to the boundary of the charts on the
intersecting region. Defining the orientation of � by � ≡ −�− ≡ �+ (and dropping the
subscript ‘−’ from A−), they become∫

�3
+

CS(Ah) +
∫

�3−
CS(A) =

∫
�

CS(Ah) − CS(A). (7)
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Now let us turn to the last two terms in (6). These two integrals arise as further boundary terms
along S1. The limit R → 0 for these integrals seems to be, from a strict mathematical point
of view, somewhat ambiguous. Let us introduce a regularization process which will ensure
that the integral on the RHS of (3) is invariant under gauge transformations A → Ag , for any
g(x) that is single valued in the limit that S1

R shrinks to a point. We demand this because the
integrand 〈FF〉 is gauge invariant and so the LHS should be invariant under any such gauge
transformation. This will be achieved if∫

C+×M2
CS(A+) +

∫
C−×M2

CS(A−) →
∫

M2
〈AAh〉. (8)

As mentioned, the justification is ultimately the gauge invariance of the final result. However,
it is possible to obtain equation (8) by an adequate regularization, which is given in the
appendix.

Finally, setting that in the limit ∂� = M2, and using the identity CS(Ah) ≡ CS(A) −
1
3 〈(h−1 dh)3〉 + d〈h−1A dh〉, allows writing (6) in a manifestly two-dimensional form as∫

M4−M2
〈FF〉 = −

∫
�

1

3
〈(h−1 dh)3〉 +

∫
M2

〈(A − h−1 dh)Ah〉. (9)

The RHS of (9) is a gWZW term, a two-dimensional action which has the desired property of
invariance under the local transformations,

h → g−1hg, A → g−1Ag + g−1 dg, (10)

which defines a theory on the topological defect, M2. The field equations, obtained by
Euler–Lagrange variation with respect to A and h, are also invariant under the above gauge
transformations.

It has been recognized that CS theory on a Riemann surface times S1 is equivalent to a
WZW model [22]. The equality (9) was conjectured to exist in [23]. We conclude that the
two-dimensional action to be considered is4

S(h,A) = κ

∫
�

1

3
〈(h−1 dh)3〉 − κ

∫
M2

〈(A − h−1 dh)Ah〉, (11)

The construction presented here generated a well-known structure in two dimensions
starting from a four-dimensional topological invariant: the gWZW terms that are the minimal
gauge invariant extension of 〈(h−1 dh)3〉. When a kinetic term for the Goldstone fields is
added, a good part of two-dimensional physics can be retrieved from this nonlinear sigma
model language: the description of the super-string [24], the characterization of exact string
backgrounds [25] and the non-Abelian bosonization phenomena [26], to name a few. The
particular action described above, the G/G model, is special in that, even when the kinetic
term is added, it defines a topological theory [27]. Thus, the G/G model, both with and
without a kinetic term, defines very closely related theories, as was discussed in [28]. In our
construction, a kinetic term does not arise.

This construction has produced a well-defined action with all relative coefficients fixed.
The procedure can also be extended to build gravitational actions in 2n − 2 dimensions
beginning from the Euler density in 2n dimensions.

2.2. The four-dimensional case

Applying the previous procedure to the six-dimensional Euler density (2) yields

S(h,A) = κ

48π3

∫
�

CS(A) − CS(Ah) − κ

48π3

∫
M4

B(A,Ah), (12)

4 As usual, the action is defined up to a multiplicative constant.
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where CS(A) is now the CS 5-form:

CS(A) := 〈
A dA dA + 3

2A
3 dA + 3

5A
5
〉
, h = eφ = exp

(
1
2JABφAB

)
, (13)

and

B(A,Ah) := 〈
AAh

(
F + Fh − 1

2A
2 − 1

2 (Ah)2 + 1
2AAh

)〉
. (14)

Replacing the identity

CS(A) ≡ CS(Ah) + d
〈
(h−1 dh)

(
AhFh − 1

2 (Ah)3
)〉 − 1

10 〈(h−1 dh)5〉
− d 1

2 〈(h−1 dh)2Fh − (h−1 dh)Ah(h−1 dh)Ah〉
− d 1

2 〈(h−1 dh)3Ah〉 (15)

back in (12), the action takes the form

S(h,A) = −κ

∫
�

1

480π3
〈(h−1 dh)(h−1 dh)2(h−1 dh)2〉

+
κ

48π3

∫
M4

〈
(dh h−1)A

(
dA +

1

2
A2

)〉

− κ

96π3

∫
M4

〈(dh h−1)A((dh h−1)2 + A(dh h−1))〉

− κ

48π3

∫
M4

〈
AAh

(
F + Fh − 1

2
A2 − 1

2
(Ah)2 +

1

4
[A,Ah]

)〉
. (16)

It must be stressed that the right normalization of the Wess–Zumino term was obtained
from the normalized Euler characteristic (2) as a by-product of the construction, without a
need for adjusting the parameters in the action (16). The normalized Wess–Zumino term for
a group with π5(G) = satisfies [29]∫

S5

1

480π3
〈(h−1 dh)5〉 = n ∈ Z, (17)

where n is the homotopy class to which the map h : S5 → G belongs.
Actions of the type (16) are widely used in particle physics to describe the infrared

behavior of QCD [30, 31]. The gauged version was introduced originally by Witten in [14],
where the motivation was to find a gauge invariant extension of the global G × G symmetry
present in the five-dimensional closed form 〈(h−1 dh)5〉. This problem is far from trivial,
since the naive gauge extension of this term obtained by replacing the exterior derivative by a
covariant derivative does not work: if this is done, the 5-form is no longer closed and the field
equations have support on the five-dimensional manifold �. Although far from obvious, the
same gWZW structures that arise in the description of QCD may also be used to describe GR.
While in QCD the gWZW term describes the interactions of the infrared sector of the theory,
here it might correspond to an ultraviolet extension of GR.

The action (16) was proposed as a gravitational model in [18] where, in order to obtain
Einstein’s field equations, a field was fixed in the action. This is a rather unsatisfactory
situation since this is a condition imposed on a theory by an a posteriori expected result.
In the following section we shall see that Einstein’s field equations arise from the action
(16) without fixing fields in the action, but considering instead an ansatz that relies on the
topological defect interpretation of the action.

The field equations associated with the variation with respect to h are∫
M4

〈
h−1δh

{
(Fh)2 + F2 + FhF − 3

4
[Ah − A,Ah − A](Fh + F)

+
1

8
[Ah − A,Ah − A]2 +

1

2
(Ah − A)[Fh + F,Ah − A])

}〉
= 0, (18)

7
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while those associated with the connection A are

0 =
∫

M4

〈
δA

(
(Ah − A)

(
Fh + 2F − 1

4
[Ah − A,Ah − A]

)) 〉
− (h ↔ h−1). (19)

If one wishes to describe a four-dimensional world with Lorentzian signature, the gauge
group to be chosen can only be SO(5, 1), SO(4, 2) or SO(3, 3). From now onwards the
discussion will be restricted to the SO(4, 2) group, as it is particularly interesting, allowing
for the quantization of the coefficient κ in front of the action [32]. In the following section,
we make contact between the action presented above and the Einstein equations.

3. The Einstein dynamical sector

The topological action5 (16 ) gives rise to first-order field equations, is invariant by construction
under coordinate transformations and is also invariant under the local transformations,

h → g−1hg, A → g−1(A + d)g. (20)

The theory contains 30 fields, 15 components of h ∈ SO(4, 2) and 15 fields in the connection
A = 1

2A
ABJAB . The introduction of a four-dimensional topological defect in the six-

dimensional manifold splits the generators JAB into those that leave invariant the tangent
space of M4, Jab, J45 and those that move it into the 4 and 5 directions, Ja4, Ja5, where
a, b = 0, . . . , 3 are Lorentz indices. It is therefore natural to separate the generators into
their irreducible Lorentz covariant parts (Jab, Ja5, Ja4, J45). Correspondingly, the connection
is written as

A = 1
2ωabJab + caJa5 + baJa4 + �J45, (21)

and the curvature reads

F = 1
2 (Rab + cacb − babb)Jab + [Dba + ca�]Ja4 + [Dca + ba�]Ja5 + [d� − bac

a]J45. (22)

Here (Jab, Ja5) and (Jab, Ja4) span the so(3, 2) and so(4, 1) subalgebras of SO(4, 2),
respectively; Rab = dωab + ωa

cω
cb is the Lorentz curvature 2-form and Dca = dca + ωa

bc
b.

Note that the vielbein should be identified as a vector under local Lorentz rotations. At this
point there is no strong reason to choose either b or c, or any linear combination thereof, as
the vielbein.

In order to write down the field equations, it is necessary to give a parametrization of the
group element. A convenient one can be constructed as follows: take the Cartan decomposition
g = p⊕q, where q is the maximal compact subalgebra of g, p = g−q and the semidirect sum
stands for [p, p] ⊂ q , [q, p] ⊂ p, [q, q] ⊂ q, the so(4) indices are denoted by a = {1, 2, 3, 4},
so that q is spanned by {Jab, J05} and p by {J5a, J0a}; now due to this decomposition any group
element g ∈ G can be written as g = pq, where q is in the maximal compact proper subgroup
of G, q ∈ Q = SO(4) × SO(2) ⊂ G and p is in its complement, p ∈ P ⊂ G. Any group
element of P belongs to an orbit of the adjoint action of Q on the exponential of a Cartan
subalgebra a ⊂ p (see, for instance, [33]). Thus, we have the decomposition of G = QAQ.
Applying this decomposition to SU(2), for instance, gives the standard parametrization in
terms of the Euler angles and can be used in general to decompose a given group in one-
parameter subgroups simplifying, in this way, the computations. In our case, it is enough to
implement a partial decomposition and the result is (see the appendix for more details)

h = ho eβJ12 eλJ24 eδJ23 e(zāJ0ā+ρJ52) eαJ05 eζ abJab , (23)

5 Topological in the sense that no metric is needed to construct it.
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where ho is a constant group element whose effect corresponds to a change in the origin of the
parametrization. In our case, ho corresponds to the nontrivial identification that is made in the
six-dimensional manifold that gives rise to the defect. The presence of ho reflects the fact that
the defect generates a non-dynamical transition function of the six-dimensional bundle. The
fields β, λ, δ, z, ρ, α, ζ , on the other hand, are fluctuations around ho. Since the directions
transverse to the tangent space of the topological defect are 4 and 5, the ‘vacuum’ of the theory
can be identified with the constant transition function ho = eθoJ45 .

On shell, we fix λ = δ = α = β = z = ρ = ζ = 0. This anzatz simplifies the field
equations enough to write them down by components. From (19) it is straightforward to obtain
(see appendix)

δ� : 0 = 0, (24)

δca : εabcdc
b(3Rcd + (2 + cosh θ0)(c

ccd − bcbd)) sinh θ0 = 0, (25)

δba : εabcdb
b(3Rcd + (2 + cosh θ0)(c

ccd − bcbd)) sinh θ0 = 0, (26)

δωab : 3εabcd(b
cDbd − ccDcd) sinh θ0 = 0. (27)

At this point it is clear that the choices of b or c as the vielbein correspond to having a positive
or negative cosmological constant, respectively. In order to see that the Einstein equations are
contained in this system, it is sufficient to set b = 0, keeping c as the vielbein and requiring
that θ0 �= 0. This further reduces the previous set of equations to

εabcdc
b(Rcd + µcccd) = 0, (28)

εabcdc
cDcd = 0, (29)

where µ = 2+cosh θ0
3 . Furthermore, the field equations obtained varying with respect to h,

(18), are identically satisfied by � = 0. This can be seen by substituting the ansatz (23)
into the field variations (18). The components (h−1δh)ab, (h−1δh)a4 and (h−1δh)a5 give field
equations proportional to the torsion T c = Dcb, and therefore are identically satisfied by
virtue of (29). The last component gives

(h−1δh)45(Rab + µcacb)(Rcd + µcccd)εabcd = 0. (30)

Although this equation might seem to give a further restriction on the geometry, that is not
the case because (h−1δh)45|h=h0 = 0, as can be easily verified for (23). It must be stressed,
however, that this is not a property of the form chosen of the parametrization (23); any other
parametrization obtained by gauge transformation compatible with the presence of the defect
would yield a physically equivalent set of equations.

As in the three-dimensional case, when GR is regarded as a gauge theory [14], contact
with the metric phase of the theory makes it necessary to require the vielbein to be invertible,
ca
µcν

a = δν
µ, ca

µc
µ

b = δa
b . The introduction of a parameter with dimensions of length, l, is also

necessary in order to make c̄a
µ = l−1ca

µ dimensionless. These two conditions allow us to regard
c̄a
µ as an isomorphism between the coordinate tangent space and the non-coordinate one, such

that the relation gµν = c̄a
µc̄b

νηab makes sense. Using this, equation (28) and the zero-torsion
condition (29), reproduce the Einstein field equations for the metric, gµν ,

Rµν − 1
2gµνR − �gµν = 0, (31)

where Rµν is the metric-compatible Ricci tensor and � = l−2(2 + cosh θ0) is the cosmological
constant.

9
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However, the semiclassical description of gravitational solutions is also related to the
form of the action. In order to describe Einstein’s gravity as a mini-superspace of this gauged
WZW theory, it is also necessary to recover the Einstein–Hilbert action. This can be done by
replacing the ansatz

A = 1
2ωabJab + caJa5, h = eθ0J45 (32)

in the action (16), reducing it to

κ sinh θ0

32π3

∫
M4

εabcdc
acb

(
Rcd +

1

2
µcccd

)
. (33)

This is indeed the Einstein–Hilbert action that gives GR with the same cosmological constant
that one obtains by putting the ansatz into the full set of field equations, thereby justifying the
use of a mini-superspace action.

4. Discussion and outlook

Here, a six-dimensional gauge theory that gives rise to four-dimensional GR has been
proposed. The starting action (16) is metric independent, and all the fields have a geometrical
interpretation. Besides the usual connection A, the transition function h around the four-
dimensional defect embedded in six dimensions is also present. These two objects (A, h) are
completely defined once a principal bundle is given over M6.

The theory generalizes GR since it contains a dynamical sector in which Einstein’s
equations hold, presumably reproducing all the experimental tests that are compatible with
GR. The Einstein–Hilbert Lagrangian is obtained as the topological dimensional reduction of
the six-dimensional Euler density by the presence of the four-dimensional topological defect.
In this way, a theory that contains other fields besides GR is obtained, something that could be
welcome in the current state of affairs, where several models have been advanced to explain
the dynamics of the galaxies, inflation or dark matter in the Universe, and other phenomena
that cannot be explained using only GR and standard matter fields.

The purely gravitational sector studied here has classically zero torsion, but the full theory
naturally includes torsion. The presence of propagating torsion in a background configuration
changes many of the known results in GR, including those about the generic existence of
singularities in spacetime6.

The transition functions represent topological information (figure 4) of the six-dimensional
action and become dynamical in the four-dimensional theory. Their presence could be
interpreted as the deconfining phase of the higher dimensional, topological theory and they
could even be relevant to the description of our Universe.

The emergence of the spacetime causal structure in the theory defined by (16) arises only
after a vielbein is chosen from amongst all the invertible linear combinations of b and c.

Because of the nontrivial choice h = exp(θ0J45), the gauge invariance of the theory
is on shell reduced to SO(3, 1) × SO(1, 1). The choice ba = 0, ca �= 0 further breaks the

6 Singularity theorems generically include as hypotheses that the connection is metric compatible and torsion free
(see [34]). Although the first hypothesis is physically motivated, the second is not, and eliminating it changes the
form of the equation of geodesic deviation: take a smooth 1-parameter system of geodesics described by a smooth
map from a strip {(t, v)|t0 < t < t1, −ε < v < ε} into M, where each geodesic is given by setting v = const, define
the coordinates vectors X = ∂t , V = ∂v and the acceleration relative as a = ∇X∇XV . With a usual definition of
torsion and curvature, it follows that

a = ∇X∇V X + ∇XT (X, V ) = R(X, V )X + ∇XT (X, V ) .

The second term is normally ignored in the equation of geodesic deviation. Thus, the inclusion of torsion could
change the bounds for the energy momentum tensor to cause singularities.

10
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Defect M 4

+
-Σ θ

Σ

Figure 4. The physical interpretation of the transition function h = exp(θJ45) as a defect caused
by removing a wedge from the six-dimensional manifold.

SO(1, 1) symmetry generated by J45, leaving the Lorentz group SO(3, 1) as the remanent gauge
symmetry. The invertibility of what is chosen as a vielbein is not affected by this remanent
gauge symmetry: the vielbein ca transforms as a vector under local Lorentz rotations.

The obtention of a gravitation theory that is metric independent, in which GR could be
seen as a broken phase of a topological field theory, has been a long-sought goal [35]. The
construction presented here is a step in this direction.
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Appendix

The regularization process

Here we give an argument to justify equation (8). Let t be a coordinate on S1
R (anticlockwise)

such that the charts in S1 are given by the rank of coordinates C− = (0, t�) and C+ = (t�, 1),
where t is periodically identified t ≡ t + 1. Let us introduce a family of functions pn(t) which,
for each n, give a partition of unity on S1

R and which converge to the Heaviside step function
limn→∞ pn(t) = θ(t − t�). The last two integrals in (6) can be expressed as∫

C+×M2
CS(A+) +

∫
C−×M2

CS(A−) =
∫

S1
R×M2

[1 − pn(t)] CS(A+) + pn(t)CS(A−). (A.1)

11
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Note that A± in regions C± define a nontrivial bundle on S1
R that cannot be extended to

the interior of D2
R . Let us define a new connection An := A+ [1 − pn(t)] + A−pn(t) on S1

R

which can be extended into the interior since it is a single connection (continuous for finite
n, distributional for n → ∞). Using the property that limn→∞ p2

n(t) = limn→∞ p3
n(t) =

θ(t − t�), it is possible to further show that

lim
n→∞

∫
S1

R×M2
(1 − pn)CS(A+) + pnCS(A−)

= lim
n→∞

[∫
S1

R×M2
CS(An) −

∫
S1

R×M2
ṗn〈A+A−〉

]

= lim
n→∞

∫
S1

R×M2
CS(An) +

∫
M2

〈AAh〉
∣∣∣∣
t=t�

. (A.2)

So for large n, we have∫
C+×M2

CS(Ah) +
∫

C−×M2
CS(A) ≈ −

∫
D2

R×M2
〈FnFn〉 +

∫
M2

〈AAh〉. (A.3)

Now, the manifold D2
R × M2 being regular and the curvature, Fn, globally defined, it is

reasonable to suppose that the integral of 〈FnFn〉 vanishes for R → 0, in which case we
recover equation (8).

The following convention for the SO(4, 2) algebra was used:

[JAB, JCD] = −JACηBD + JBCηAD − JBDηAC + JADηBC, (A.4)

A = 0, . . . , 5ηAB = (−, +, +, +, +,−). (A.5)

Some notation: Einstein’s equation as a 3-form.

εabcde
bRcd = 0, (A.6)

�⇒ εabcde
bRcd dxµ = 0 (A.7)

�⇒ εabcd
1
2eb

vR
cd
λρ dxv dxλ dxρ dxµ = 0 (A.8)

�⇒ δ
vλρµ
αβγ δe

a
αeβ

v R
γ δ

λρ det(e) d4x = 0 (A.9)

�⇒ Rµ
α − 1

2δµ
α R = 0, (A.10)

where in the second line equation (A.6) is multiplied by the differential dxµ, in the third line
the definition of Rab = 1

2Rab
µv dxµ dxv is used and in the fourth line εabcd in the non-coordinate

tangent space is passed to the coordinate tangent space using the vielbeins, so that a determinant
of them appears in that transformation and the identity εαβγ δ dxv dxλ dxρ dxµ = δ

vλρµ
αβγ δ d4x was

used. Finally, contracting the generalized delta δ
vλρµ
αβγ δ with the Riemann tensor and multiplying

by eα
a Einstein’s field equation in its tensorial form appears.

Some useful formulae

Given h = eθJ45 , it is possible to compute

Ah = 1
2ωabJ

ab + Ja4(b
a cosh θ + ca sinh θ) + Ja5(c

a cosh θ + ba sinh θ) + (� + dθ)J45

(A.11)
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Fh = 1
2 (Rab + cacb − babb)Jab + Ja4[(Dba + ca�) cosh θ + sinh θ(Dca + ba�)]

+ Ja5[(Dca + ba�) cosh θ + sinh θ(Dba + ca�)] + (d� − baca)J45

[Ah − A,Ah − A] = 2(1 − cosh θ)(cacb − babb)Jab

+ 2((cosh θ − 1)ca + sinh θba) dθ Ja4

+ 2((cosh θ − 1)ba + sinh θca) dθ Ja5 + 4(1 − cosh θ)cabbηabJ45. (A.12)

On the group parametrization

How the parametrization used in this paper arise from the Cartan discomposition,

h = ho exāJ5ā+yāJ0ā k (A.13)

where k is an arbitrary group element of the maximal compact subgroup of SO(4, 2), can be
explicitly checked as follows. First, note that

eβJ12 eλJ24 eδJ23ρJ52 e−δJ23 e−λJ24 e−βJ12 = xāJ5ā , (A.14)

where

x1 = ρ sin β cos δ cos λ,

x2 = ρ cos β cos δ cos λ,

x3 = −ρ sin δx4 = −ρ cos δ sin λ.

(A.15)

It follows that

xāJ5ā + yāJ0ā = eβJ12 eλJ24 eδJ23(zāJ0ā + ρJ52) e−δJ23 e−λJ24 e−βJ12 , (A.16)

where the redefinition in the coordinates

z1 = y1 cos β − y2 sin β

z2 = y1 cos λ sin β cos δ + y2 cos β cos λ cos δ − y3 sin δ − y4 cos δ sin λ

z3 = y1 sin β cos λ sin δ + y2 cos β cos λ sin δ + y3 cos δ − y4 sin λ sin δ

z4 = y1 sin β sin λ + y2 cos β sin λ + y4 cos λ

(A.17)

was used. Finally, the group element can be written as

h = ho eβJ12 eλJ24 eδJ23 e(zāJ0ā+ρJ52)k1, (A.18)

where k1 = e−δJ23 e−λJ24 e−βJ12k is an arbitrary compact subgroup element.
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